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ABSTRACT 

In this paper a novel global optimisation approach is 
used to look for potentially interesting solutions for a 
mission to Mars. The approach blends the 
characteristics of evolution programming with the 
systematic search, typical of branching techniques. 
Solutions for a roundtrip to Mars, either direct or via 
Venus, considering long and short stays on Mars or 
free-return trajectories are considered providing a 
comprehensive view of all the opportunities in a wide 
range of launch dates. Finally electric propulsion 
options are investigated including the possibility of 
using Mars’ lagrangian points for a low cost capture. 
 

INTRODUCTION 
In recent years the space community has 

demonstrated a growing interest in global optimisation 
techniques as a viable tool for the design of space 
trajectories1,2,3,4,5. However most of the global methods 
used so far can be classified as stochastic or heuristic 
approaches and in particular of the evolution-
programming category, which represents only a portion 
of all available global methods6. In many cases they 
have proven to explore efficiently the solution space 
providing even unexpected optimal solutions or a 
number of good initial guesses useful for a further 
optimisation with more accurate local optimisation 
techniques.  

Other classes of global methods like deterministic 
ones, as branch and bounds approaches, have received 
less attention even though they have demonstrated to be 
extremely effective in many other fields. A 
hybridisation of both stochastic and deterministic 
approaches could be beneficial to improve the 
effectiveness of both at solving space related problems.  
In this paper an analysis of a variety of Earth-Mars 
transfer trajectories has been performed using a 
particular global optimisation approach which 
combines a stochastic and a deterministic method.   
 
 
 
 

The basic idea of this novel approach is to use a limited 
set of potential solutions evolving for a small number 
of generations, according to some specific evolution 
programming rules (the stochastic step), in subregions 
of the solution space defined by a branching procedure 
(the deterministic step). On the other hand the 
branching rules, i.e. the rules used to partition the 
solutions space, are functions of the outcome from the 
evolution step. This technique has been used to conduct 
an extensive search for families of potentially 
interesting transfer trajectories from Earth to Mars, and 
return, in view of future exploration and colonisation 
missions envisaged by the Aurora program. Several 
types of trajectories have been modelled including: 
multiple impulsive transfers, low thrust propulsion 
trajectories and indirect transfers, exploiting gravity 
assisted manoeuvres or weak stability regions in order 
to reduce either the transfer time or propellant 
consumption. Some interesting results will be 
presented. 
 

GENERAL PROBLEM FORMULATION 
Optimisation problems in trajectory design can be 

formulated, in their general form, as: 
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where f is a scalar nonlinear function of a 
multidimensional vector y defined within the domain 
D. The domain D is a hypercube defined by the upper 
and lower bounds on the components of the vector y: 
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The vector C(y) is formed by all nonlinear 
constraint functions of the vector y. If problem (1) is 
twice continuously differentiable and presents a single 
solution, i.e. only one vector y in the domain D 
minimises f and satisfies C, a nonlinear programming 
method like sequential quadratic programming (SQP) 
can be efficiently used. This means implicitly that the 
problem must be formulated properly and cannot 
contain non-differentiable quantities. However even in 

mailto:Massimiliano.Vasile@esa.int


 2 

this case the problem may present more than one 
solution within the required domain D.  

If the problem is either non-differentiable, i.e. no 
gradient method can be applied, or more than a solution 
is expected, a global optimisation method must be 
considered. The idea is to perform an extensive search 
of the solution space D looking for possible solutions to 
problem (1). In this respect the interest could be more 
to find a number of good initial guesses for the 
nonlinear programming solver, than finding the global 
optimum with a high level of accuracy.  

Among all global methods two categories are here 
considered: heuristic methods and systematic methods. 

Heuristic methods contain all methods that cannot 
be proven to find a global optimum with a predictable 
amount of work. Most stochastic methods are in this 
class. For them, it is sometimes possible to prove 
convergence with probability arbitrarily close to 1 but 
with a number arbitrarily large of function evaluations.  

Systematic methods contain all methods that (in 
exact arithmetic) are guaranteed to find the global 
optimum with a predictable (deterministic) amount of 
work. The bound on the amount of work is anyway 
quite high: exponential in the problem characteristics. 
The simplest systematic method for bound constrained 
problems is grid search where all points on finer and 
finer grids are tested and the best point on each grid is 
used as a starting point for local optimisation. The 
number of grid points grows exponentially with the 
dimensions of the problem and so does the amount of 
work. Even though systematic methods are generally 
more reliable than heuristic ones they need some level 
of insight into the problem and the structure of the 
objective function, to be efficient (an exception can be 
made for methods based on interval analysis9). If the 
problem is represented by a black box then they may 
not find the global optimum in a reasonable amount of 
time. This is understandable if we look at the density 
theorem (Törn and Zilinskas 1989), which states that 
any method based on local information only, that 
converges for every continuous f to a global minimizer 
of f in a feasible domain D must produce a sequence of 
points y1 ,y2,y3 ,…that is dense in D. A well known 
stochastic method is represented by Genetic Algorithms 
(GA) that make use of analogies to biological evolution 
by allowing mutations and crossing over among 
candidates for good local optima in the hope to derive 
even better ones. The original concept of Genetic 
Algorithms is to encode a potential solution 
(individual) of the problem under study, in the form of 
a binary string in which each binary number represents 
a chromosome of the “DNA” (or genotype) of the 
solution (or phenotype). More sophisticated genetic 
algorithms make use of the data structure of the 

problem to encode the individual in the more 
appropriate way7.  

In general all methods that resort to some heuristic 
ideas derived from biological evolution can be defined 
as evolution programming methods. An interesting 
concept is represented by niching-GA8. The basic 
concept is that in nature different species can exploit 
different niches in the environment. This translates in 
the formation of subpopulations with each 
subpopulation specialized at a subtask of the problem 
or exploring a subregion. Subpopulations can compete 
as in pure GA or cooperate. 

Among systematic methods there are some that split 
the solution domain on the base of some local 
information. Each time the domain is split, a number of 
new branches are created, each branch corresponds to a 
further exploration of the solution space and each 
subdomain represents a node that can be expanded and 
explored further. If the diameter of all the nodes 
converges to zero, convergence of the algorithm is 
straightforward.  

The proposed optimisation approach is composed of 
a stochastic and a systematic step. The stochastic step is 
performed using evolution programming and is meant 
to obtain information on the possible presence of 
optima in a subdomain Dl⊆ D. The systematic step is 
performed through a branching approach and is used to 
partition the domain D into subdomains Dl. where the 
presence of an optimum is expected. Each subdomain 
may or may not contain the global optimum but the 
systematic exploration and the qualification of each 
subdomain on the base of the best solution found and 
the volume of the subdomain, allows finding a number 
of optima and eventually the global one. This particular 
hybridization can be seen as a form of forced niching 
since populations evolving in subregions form different 
species. 

 
EVOLUTION-BRANCHING APPROACH 

Evolution Step 
Each solution y is represented by a string containing 

in the first m components integer values and in the 
remaining s components real values. This particular 
encoding allows the treatment of problems with a 
mixed integer-real data structure. A hypercube S is 
associated to each individual y, the hypercube, 
enclosing  a region of the solution space surrounding 
the individual, is defined by a set of intervals 
S=S1xS2…xSn ⊆Dl, where Si contains the value of the 
component yi. The solution space is then explored 
locally by acquiring information about the landscape 
within each region S and globally using a population of 
individuals y with their associated intervals. Each 
individual can communicate its findings to the others in 
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order to evolve the entire population toward a better 
status. 

Evolution is governed by four fundamental 
operators: mutation, migration, mating and filtering.  
The mutation operator generates a new individual 
perturbing randomly an old one. The mating procedure 
takes two individuals and generates one or two children 
mixing the genotypes of the two parents. Four schemes 
are used to mate individuals: 
• Single point crossover exchanges part of the genes 
between the two parents; 
• Arithmetic crossover generates a new individual with 
an interpolation of the two parents;  
• Extrapolation generates a new individual on the side 
of the best individual between the two parents y1 and y2 
at a distance from the best parents proportional to the 
vector connecting the two parents: 

2123 )( yyyy +−= α ;                       (3) 
• Second order extrapolation mating generates a child 
using two parents and the child generated with an 
extrapolation mating. If p is the vector difference 
between y1 and y3 and f1,f2,f3 are the fitness values for 
the three individuals y1,y2,y3 respectively, then a second 
order one-dimensional model of the fitness function is 
built and the new child is generated taking the 
minimum of the resulting parabola (see Figs.1): 
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The mating operator is used also to prevent 
crowding of more than one principal individual in the 
basin of attraction of the same solution: if two or more 
principal individuals are colliding (intersecting their 
migration regions) they are automatically mated but if 
they reciprocal distance falls down below a given 
threshold, a repelling mechanism is activated which 
mates the worse individual (between the two colliding) 
with the boundaries of the subdomain Dl: each 
component of the selected individual is blended with 
the value of the furthest bound, projecting the 
individual into a random point within Dl, according to 
the following relation:  

12 )1( iii yby αα −+=                  (6) 
Environment perception and Migrations  

h region S is evaluated using two mechanisms: 
g or perception and learning. Breeding 

generates a subpopulation and selects the best child, if 
better than the parent. A new region S is then 
associated to the child generating a migration of the 
entire subpopulation toward a place where better 
resources are expected. For this reason each hypercube 
S is here called migration region. The subpopulation is 
generated with the following procedure: a first child is 
generated, within S, mutating the parent, then an 

extrapolation mating is performed. The two resulting 
children and the parent are then used to generate a third 
child using second order extrapolation mating. The 
procedure is repeated until a number of children equal 
to the number of coordinates have been generated (see 
Fig. 1). This procedure can be seen as a way for the 
individual y to perceive or sense locally the 
environment to obtain clues about where to proceed 
with the exploration of the solution space. 
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where, for individual j and for dimension i, Sj
i is the 

difference between the value of the upper bound and of 
the lower bound and the summation is over non-zero 
dimensions.  Now, if from generation k to generation 
k+1 the differential improvement increases, then the 
migration radius is recomputed according to the 
prediction: 

)1log(1 jej
k

j
k +−=+ ηρρ                 (10) 

where η is equal to 2 in this implementation. For 
integer numbers migration operates in the same way but 
the migration regions and migration radius are 
generated and treated differently. In particular if ρimin is 
1 and ρ is defined as:  

]),)2logmin[int min2 i
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where ∆fj is the difference between the function fj at 
generation k+1 minus fj at generation k. The migration 
region is therefore contracted differently for real and 
for integer variables allowing a better spatial 
exploration. 

 
Filtering 
 Instead of traditional selection mechanisms based 

on fitness here a permanent population of n individuals 
is maintained from one generation to another. Each 
individual has a chance to survive provided that it 
remains inside the filter. The filter ranks all the 
individuals on the basis of their fitness from the best to 
the worst. All the individuals with a fitness worse than 
a given threshold are either hibernated (i.e. no operator 
is applied) or mutated while migration is applied to all 
individuals within the filter. This allows each of the 
individuals within the filter to evolve toward a different 
local optimum. Mating is operated on all the 
individuals in the upper part of the filter combining 
them with individuals in the lower part of the  filter. 
After mating, the resulting children survive according 
to their predicted position in the filter.  

 
Branching Step 

Even though the filter increases the chances of 
finding several optima and eventually the global one, 
convergence is not guaranteed due to the stochastic 
nature of the process. Therefore, a systematic step is 
taken on the basis of the output of the evolution 
algorithm. The initial domain D0≡D is partitioned 
generating a number of subdomains Dl. Each 
subdomain is then qualified and explored further 
according to its qualification.  

The partitioning, or branching, process begins 
taking the worst individual, which is out of the filter, 
and cutting  D0 into L subdomains, corresponding to L 
potentially new branches (or nodes). Each one of the L 
nodes may or may not contain an individual coming 
from the previous step of evolution and the volume of 

the node depends on the position of the cutting point (a 
special mechanism prevents cuts too close to a 
boundary moving the cutting point to the middle of the 
interval). For each node Dl the ratio between the 
relative number of individuals and the relative volume 
is computed and the resulting quantity defines how 
necessary further exploration of the node is: 
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where the volumes VDl and VD are computed taking 
only edges with a non-zero dimension. This quantity is 
then added to a fitness ϕDl defined as: 
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where J is the number of individuals in domain Dl. If 
interval analysis is available each subregion is 
evaluated taking the inferior and superior values, the 
quantity ϕDl is then defined as:  
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The node is then qualified by the quantity: 

lll DDD ϕσσϖψ )1( −+=                   (15) 

where σ is the weighting factor that weights how 
reliable the result coming from the evolution step is 
considered. If σ  is 0, only the nodes with low fitness 
are explored because the EP algorithm is considered 
reliable enough to explore exhaustively the domain D 
without leaving any region unexplored. On the other 
hand if σ is 1 the result from the EP algorithm is 
considered to be not reliable due to a premature 
convergence or to a poor exploration of the solution 
space. Now every time a node Dl  is subdivided into 
other Q subnodes only the most promising pair is taken 
into account. If ψDl is used to select the most promising 
ones among all L subdomains, the best pair out of the Q 
subnodes generated for each subdomains is selected 
using the following slightly different quantity: 
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where γq is, for each of the subnodes q, the ratio 
between the length of the edge along which the 
subdomain Dl is cut and the corresponding edge of Dq. 
Once a Dq is selected the other subnode of the pair will 
be the complement Dq+1 = Dl -Dq . For a fast search 
only nodes presenting a high fitness and large volume 
are explored further.   

In order to avoid the rediscovery of minima already 
found, the original domain is partitioned using more 
than one individual. If the worst individual is useful to 
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determine an upper bound on the objective function, 
converged individuals suggest where a further 
exploration is unnecessary. Therefore, in the general 
scheme, all converged individuals are ranked 
depending on the value of their fitness function. The 
principal cut is then, as stated above, performed using 
coordinates of the worst individual, the second cut 
takes the worst converged individual and so on up to 
the best converged individual.  
 
Constraint satisfaction 

The algorithm described solves bound-constrained 
problems but since in most of the cases constraints are 
nonlinear an extension of the algorithm has been 
developed that takes into account nonlinear inequality 
constraints.  In this case the algorithm is run at first in 
order to look for a feasible set and solving, therefore, 
the problem: 
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where m is the number of constraints. Once a feasible 
set has been found the perception mechanism is used to 
ensure that every move maintains the population inside 
the feasible set. If f* is the value of the objective 
function of an individual y inside the feasible set, the 
objective function of a new individual generated from y 
is then augmented in the following way: 
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Interval Analysis and Stopping Criterions 

There are two combined stopping criteria: one for 
local convergence and one for global convergence. 
Both are based on some heuristics and not on any 
rigorous proof of global converge. Local convergence 
of each subpopulation is determined by the 
improvement of each individual and by the migration 
radius. In a convex problem, both should tend to zero in 
a neighborhood of the solution. Since each individual is 
supposed either to converge to a different minimum or 
not to converge (letting just the individual with highest 
rank in the filter to converge) a global stopping 
criterion for the EP is the convergence of the filter. The 
convergence of the filter is determined by the 
convergence of all the individuals if they are not 
clustered, i.e. if their migration regions are not 
intersecting, and, otherwise, by the convergence of the 
best individual. It must be noticed that when EP is used 
in conjunction with branching the convergence of the 
filter is not usually necessary since the branching takes 
care of the global exploration of the solution space. The 
global convergence of the branching is reached either if 
all the nodes reduce below a given tolerance or if EP 

have converged in all subdomains and no improvement 
is reported after branching, i.e. no new local minima are 
discovered. Interval analysis, when used, guarantees 
that the node containing the global minimum is always 
in the list of explored nodes therefore if the difference 
between the inferior value of the best node and the best 
individual contained in that node is below a given 
tolerance, convergence to the global optimum is 
achieved.   
 

CHARACTERISATION OF EARTH-MARS 
ROUNDTRIPS 

The global search algorithm presented in the 
previous chapters is now applied to the problem of 
characterising Earth-Mars transfers.  

The first analysis looks for roundtrips from Earth to 
Mars and back with minimal total ∆v. Roundtrip 
trajectories are made of an Earth-Mars transfer, 
departing from either a circular or an elliptical orbit 
around the Earth and aiming at either a circular or an 
elliptical orbit about Mars, a certain stay time around 
Mars and a return transfer to either a circular or an 
elliptical orbit around the Earth. Depending on the 
launch date and on the transfer time, for each leg, 
different families of roundtrips can be envisaged. In 
order to include even free return trajectories, instead of 
a braking and a departure manoeuvre, a swing-by of 
Mars is performed every time the stay time drops below 
1 day. Then this problem can be  formulated as:  

4321min vvvvf
D

∆+∆+∆+∆=               (19) 

where ∆v2 and ∆v3 represent respectively the 
braking manoeuvre and the departure manoeuvre at 
Mars, while ∆v1 and ∆v4 are the departure manoeuvre 
and the braking manoeuvre at Earth respectively. Each 
∆v is a function of the departure date t0, the time of 
flight for the outbound leg T1 and for the inbound leg T2, 
the stay time ts and of course of the pericentre and 
apocetre of the departure (rp

E, ra
E) and arrival (rp

M, ra
M) 

orbits. Each solution is therefore defined by the 
following vector: 
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And the solution space D contains all possible 
values of y. In case of swing-by of Mars the objective 
function becomes: 

4
2
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where the two constraint violations for the swing-by 
manoeuvre, C1 and C2 are defined as: 

oiooi vvCvvC )2cos(,  ; 12
22

1 β+>=<−= vv (22)
where vi and vo are the incoming and outgoing velocity 
vectors relative to Mars and β is the deviation angle, 
function of the modulus of the incoming velocity and of 
the radius rM

p of the pericentre at Mars. A further 
analysis of return trajectories via Venus has been done, 
introducing an additional swingby in the model and 
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extending the solution vector (and therefore the domain 
D) as follows:  

 
TM

a
M
p

E
a

E
ps TThrrrrtTTt ],,,,,,,,,,,[ 43210 ω=y  (23) 

 
where now T2 is the time of flight from Mars to 

Venus, h is the pericentre altitude at Venus, ω is the 
rotation angle of the plane of the hyperbola around the 
incoming vector with respect to the ecliptic plane10, T3 
is the time of flight after the swingby, up to a deep 
space manoeuvre and T4 is the time of flight from the 
deep space manoeuvre up to the Earth. The new 
objective function must include the deep space 
manoeuvre and therefore becomes: 

54321min vvvvvf
D

∆+∆+∆+∆+∆=      (24) 

 
Short and Long Stay Options  
At first problem (19) was solved looking for 

roundtrips with a variable stay time from 0 to 600 days 
and evaluating the total ∆v necessary for each launch 
opportunity. Then, the search was focused on short stay 
opportunities including returns via Venus (commonly 
called opposition class missions). The solution space D 
for problem (19) and (21) is defined in Tab.1 and 
comprises all the possibilities including free return 
trajectories. Launch windows from 2015 to 2043 were 
explored and all the solutions with a total ∆v less than 
13 km/s have been collected and plotted in Figs. 2 and 
3, where diamonds represent short stay and free return 
options. 

Then if the upper limit on total ∆v is extended to 15 
km/s several short stay trajectories with a return via 
Venus become feasible. The result has been plotted in 
Fig.4. It should be noticed that a return via Venus is not 
always available and for each solution via Venus it is 
often possible to find a direct return with a comparable 
level of ∆v. This is true apart from two launch windows 
in which only a return via Venus allows, for a short stay, 
a total ∆v less than 15 km/s.. Furthermore, for two 
particular launch opportunities (15 years away one 
from the other) an almost continuous range of short 
stay periods are allowed.  

The latter one of the two comprises almost all the 
returns via Venus since for this date Venus is in a 
particularly favourable position.  

Very short stays (less than 10 days) are also 
possible both via Venus and via direct return. This class 
of trajectories can become interesting as abort options 
in case an immediate return is necessary and a 
manoeuvre at Mars can still be executed. The most 
interesting options for a short stay either via Venus are 
summarised in Tab. 2 for the period from 2028 to 2037 
while optimal solutions for each launch date, in the 
same period, are summarised in Tab. 3. 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Departure date vs. TOF 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Departure vs. stay time 
Table 1.Domain D for the roundtrip problem 

T0 
(MJD) 

T1 
(DAY) 

T2 
(DAY) 

TS 
(DAY) 

RP
E 

(KM) 
RA

E 

(KM) 
RP

M 

(KM) 
RA

M 

(KM) 

5479 50 50 0 6778 6778 3789 3789 
15775 700 700 600 6778 6778 5.7e5 5.7e5 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Return via Venus vs. direct return 
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Since total absorbed radiation dose is one of the key 
issues for human Mars mission design and since the 
trajectory choices are the most influential parameters, 
the total dose due to galactic cosmic radiation (GCR) 
were calculated for all presented options in Tab. 3. The 

values are equivalent BFO dose values in sievert (Sv). 
Interplanetary dose values behind 10 g/cm2 Al are 
assumed at 0.24 Sv/a. Mars surface levels behind 5 
g/cm2 Al are assumed 0.15 Sv/a. Dose levels for 
equivalent PE shielding materials are given in brackets. 

Table 2 Best short stay options via Venus from 2028 to 2037 
LAUNCH  

DATE 
E-

M(DAY) 
M-E(DAY) TS(DA

Y) 
∆V1 (KM/S) ∆V2 (KM/S) ∆V3 (KM/S) ∆V4 (KM/S) ∆V5 

(KM/S) 
21/10/2028 252 251 2 4.16 3.63 4.80 5.98 0.193 
04/07/2029 529 404 2 4.28 5.28 3.27 4.72 1.579 
30/06/2031 460 490 2 4.12 4.56 3.28 6.53 0.644 
16/04/2033 199 352 28 3.59 2.43 4.21 3.94 6.15e-4 
17/02/2035 236 318 2 4.97 3.02 4.29 3.78 3.13e-4 
02/09/2037 225 475 30 4.06 2.03 3.33 4.36 1.369 

Table3. Optimal solutions for direct Earth-Mars roundtrip from 2028 to 2037 
LAUNCH 

DATE 
E-

M(DAY) 
M-E 

(DAY) 
TS(DAY) ∆V1(KM/S) ∆V2 

(KM/S) 
∆V3 

(KM/S) 
∆V4 

(KM/S) 
GCR (SV) MF/M0 

23/11/2028 300.1 353.5 344.1 3.589 2.244 2.077 3.9348 0.57(0.43) 0.035 
09/08/2029 596.6 320.9 600 4.366 5.067 2.1498 4.123 0.85(0.63) 0.01 
24/12/2030 283.1 217.7 497.8 3.663 2.53 1.992 3.749 0.53(0.38) 0.035 
17/02/2031 210.7 217.7 514.9 3.806 2.776 1.992 3.749 0.49(0.35) 0.031 
16/04/2033 199.7 198.0 553.0 3.587 2.435 2.239 3.589 0.49(0.34) 0.036 
26/11/2034 248.1 251.0 30 6.1361 3.9151 3.498 5.1868 0.34(0.28) 0.003 
27/06/2035 201.9 267.5 535.6 3.6447 2.07 2.5836 3.689 0.53(0.37) 0.034 
02/06/2036 700 284.9 444.0 4.7548 8.347 2.313 3.5439 0.83(0.64) 0.001 
15/08/2037 347.5 282.9 358.1 3.9298 2.131 2.313 3.5439 0.56(0.42) 0.035 
Free Return Trajectories and Cyclers 

As can be noticed from Figure 3, for each launch 
window it is possible to find a solution with a stay 
period below one day which in fact corresponds to a 
trajectory that departs from Earth, flybys Mars and 
comes back to Earth ballistically, i.e. without 
manoeuvres. These trajectories, known as free return 
trajectories, can be grouped in three main categories 
(see Fig. 8).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Figure 5. Up escalator  

 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Down escalator 
The first one comprises all transfers with a low 

departure velocity from Earth, a correspondent short 
transfer arc to Mars and a long arc leading the 
spacecraft back to Earth again with a low arrival 
velocity (see Fig.5). The overall period in space is 
about two terrestrial years, therefore, in analogy with 
Earth-Mars one synodic period cyclers, these free 
return trajectories are here called up escalators. The 
second category comprises all free return trajectories 
with an initial long transfer to Mars and a short return 
leg to Earth, the total time in space is again about two 
years and therefore these trajectories are here called 
down escalators (see Fig.6). The third category of free 
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return trajectories presents a relatively short transfer 
time on both legs either to go or to come back (see 
Fig.7). 

As can be seen in Fig. 8 short free return trajectories 
can be subdivided further in three groups depending on 
the length of each leg. All best free return opportunities 
for the period from 2028 to 2037 have been 
summarised in Tab. 4 where transfer time, infinite 
velocity at Mars and ∆vs at Earth are reported. As can 
be read, although up and down escalators are appealing 
for their relatively low ∆v at departure they can become 
prohibitive if the spacecraft has to be inserted in orbit 
around Mars with a propulsive manoeuvre, due to the 
high infinite velocity. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. Short roundtrip 

On the other hand some short free return options, 
although more demanding in terms of ∆v at departure 
have in general a lower velocity at Mars and could be 
interesting either as nominal trajectories in order to 
increase safety for manned missions or as abort options. 
In fact if a failure, not affecting the propulsion system, 
forces the mission to be aborted on the way to Mars a 
deep space manoeuvre, exploiting the whole remaining 
propellant, could be used to inject the spacecraft on a 
short free return transfer back to Earth 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. Free return trajectories 
 

Table 4. Best free return options found from 2028 to 2037 
LAUNCH DATE E-M (DAY) M-E (DAY) ∆V1 (KM/S) ∆V4 (KM/S) V∞ (KM/S) RP (KM) 

26/12/2028 141.1 588.4 4.281 4.283 10.77 43389 
01/08/2029 582.49 147.4 4.349 4.347 6.961 43301 
18/09/2030 272.5 253.82 5.827 8.11 5.253 3789.0 
09/02/2031 122.87 600 4.285 4.319 11.653 43389 
21/11/2032 252.67 255.98 4.977 6.38 5.1056 3790.7 
12/04/2033 99.05 600 4.446 4.876 11.44 13732 
02/01/2034 600 90.48 5.103 4.499 10.488 9840.1 
25/02/2036 600 11.35 4.504 4.311 11.776 36714 
24/01/2037 254.32 262.8 7.2679 5.2115 5.252 3789.0 

 
Optimal Staging 

Even in case cryogenic propellants are considered 
for propulsion (with an Isp=450s) the mass budget for a 
roundtrip to Mars could be prohibitive even for 
minimum ∆v transfers (see last column of Tab.3). A 
solution could be to resort to staging in order to 
improve the payload returned to Earth. Therefore, the 
natural extension of problem (19) is to introduce 
staging sequences in the model and to optimise for the 
final mass mf instead of the total ∆v. The staging model 
assumed here is fairly simple and does not take into 
account gravity losses. Furthermore, a constant specific 

impulse and a constant structural factor of 0.15 has 
been considered for each stage.  

spIg
v

ii emm 0
1

∆−

+ =                                   (25) 

iii ssppli mmmmm +++=
+++ 111         (26) 

ps mm 15.0=                                        (27) 
the objective function then becomes: 

0D
/  min mmf f−=

∈y

                                (28) 

where m0 is the initial mass and each solution is defined 
by the vector: 
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E
ps rrrrtTTt ],,,,,,,,,[ 210 εε=y      (29) 

where εE
i and εM

i represent for Earth departure and for 
Mars insertion respectively the ratio between the 
apocentre of the departure (arrival) orbit rE

a (rM
a) and 

the apocentre radius of the intermediate orbits. The 
pericentre altitude of the departure (arrival) is 
constrained to be at 400 km and the initial and final 
orbits are assumed to be circular with the same altitude. 
Therefore, if a 2-stage strategy is used for Earth escape 
the first stage injects the spacecraft from the 
400x400km circular orbit into an intermediate orbit 
with apocentre εΕ

1rE
a and the second stage injects the 

spacecraft into a departure orbit with apocentre rE
a. 

Furthermore, the number of stages is fixed and equal 
for each escape or capture manoeuvre. In Table 5 some 
optimal solutions for the interval [2028,2037] are 
reported for a two stage strategy.  

 
Table 5 Mass fractions at arrival at Earth with 2 stages 

DATE RE
A  

(KM) 
εΕ

1 RM
A 

(KM) 
εM

1 
MF/M0 

23/11/2028 5.4e4 0.162 1.9e5 0.03 0.168 
24/12/2030 4.3e4 0.195 1.0e5 0.06 0.167 
16/04/2033 4.1e4 0.197 4.1e5 0.015 0.168 
09/07/2035 4.8e4 0.178 5.0e5 0.01 0.166 

 
LOW-THRUST TRANSFERS 

All the analysis of the previous chapter assumed the 
use a high thrust engines, anyway low-thrust propulsion 
systems may become interesting both for manned and 
unmanned missions. Therefore, an analysis of direct 
low-thrust Earth-Mars transfer will follow. A low-
thrust trajectory is here modelled using an inverse 
method: the Cartesian coordinates of the spacecraft are 
described by means of a set of pseudo-equinoctial 
elements αααα. The set of elements used to parameterise 
the Cartesian coordinates are here called pseudo-
equinoctial because they do not satisfy exactly the 
Gauss’planetary equations unless the thrust is zero. 
Each element is then developed in form of a 
parameterised function of the anomaly L. This function 
is the shape of the pseudo-element. 

Once position is defined in terms of the pseudo-
elements velocity and accelerations can be computed 
by differentiation: 

 

L
r

L
r

dL
dr

dt
dL

dL
dv

dt
dva

dt
dL

dL
dr

dt
drv

i

ii ∂
∂+

∂
∂

∂
∂=

====

∑
=

α
α

5

1

  ;
          (30) 

In order to obtain the set of pseudo-elements that 
satisfies exactly the conditions at boundaries, the 
following nonlinear programming problem must be 
solved: 

;)),((    ;)),((
;)),((    ;)),(( 000000

ffffff LLLL
LLLL

vαvrαr
vαvrαr
==

==          (31) 

anyway for low values of the acceleration it is 
sufficient to solve the easier linear problem: 

;)(    ;)( 00 ffLL αααα ==                    (32) 
For each set of pseudo-elements a different 

trajectory can be generated, connecting two points in 
the state space. The controls necessary to achieve the 
imposed shape of the trajectory can then be obtained by 
solving the following system: 

∫
=−=

−
ft

t
c dtac

fc emm
r

0
03     ;raa µ               (33) 

with the additional constraint: 

∫=−
fL

L
f dL

dL
dttt

0

0
                                  (34) 

This approach is extremely fast and the 
computational cost extremely low since no propagation 
or collocation is necessary. 

Of course the thrust profile, though constrainable, is 
a direct consequence of the shape and must be 
considered only a first guess useful for further, more 
refined optimisation. However, the attempt here is to 
widely explore the solution space rather then to find an 
accurate solution. For this reason the design of the low-
thrust trajectory has not been written either in the 
optimal control form (with adjoint equations) or in any 
direct transcription form (collocation or shorting). 

It is anyway expected that as the shape of the 
pseudo-elements approaches the solution of the 
corresponding optimal control problem the inverse 
method will yield the associated optimal control for the 
thrust. For the analysis conducted in this paper the 
following shape has been used: 

)sin()()( 000 LLLLL f −+−+= pααα             (35) 
where p=[p1, p2, p3, p4, p5]T is a set of parameters 

shaping each pseudo-element. 
The optimality of the solution found can be seen 

from the comparison with the optimal solution 
computed for mars Exobiology. In the optimised 
solution the trajectory is characterised by two cost arcs 
and three thrust arcs and a maximum thrust dependent 
on the distance from the Sun. On the other hand the 
first estimate obtained with the inverse approach does 
not contain any model for power and thrust and no 
coast arcs are introduced a priori.  

The optimisation problem then becomes: 

max0   ;

  min

0

aadL
dL
dttt

-m

c

L

L
f

fD

f

≤=− ∫
                              (36) 

and the solution vector is: 
TpppppTtn ],,,,,,,,,[ 5432110 φθ=y               (37) 
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where n is an integer number representing the number 
of revolutions, t0 is the departure date and T1 the 
transfer time. The domain D is specified in Tab. 6. 

Table 6. Domain D for the low-thrust problem 
N T0 T1 θ φ P1 P2 P3 P4 P5 
0 2500 500 -pi -pi -0.1 -0.1 -0.1 -0.1 -0.1 
2 3000 1e3 pi pi 0.1 0.1 0.1 0.1 0.1 

Table 7. Comparison with Mars Exobiology 
SOL. DEPARTURE TOF(DAY) MF/M0 VINF(M/S) 
Opt. 18/03/2007 873 0.16 622  
FG 09/03/2007 772.1 0.162 622  

The resulting trajectory is represented in Fig. 9 with 
the associated thrust profile plot in Fig. 10. The main 
characteristics of the two trajectories are summarised 
and compared in Tab.7 where FG stands for First Guess 
and represents the solution computed with the inverse 
approach. 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Figure 9. Mars Exobiology test case 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10 . Thrust profile 
 
The algorithm successfully identified a solution with a 
low mass consumption comparable with the optimised 
solution for Mars Exobiology. The transfer time 
however is quite different due to the selected shape of 
the orbit. The solution found is expected to have an 
error in the velocity due to the not exact solution of 
problem (31). However this error has been verified to 

lead, in general, to an error in propellant mass 
consumption which is below 15%. Therefore this 
solution is considered acceptable as a first estimate of a 
possible transfer with low-thrust propulsion, since the 
error is within the usual margin taken in preliminary 
mission design. 
 
Low-thrust transfers with ballistic capture at Mars 

The propellant consumption to reach a Mars with a 
low excess velocity, provided by low thrust transfers 
opens the  interesting possibility to exploit lagrangian 
points of the Mars-Sun system to attempt a low-energy 
capture in Martian orbit. Maintaining the previous 
model for low-thrust arcs now the dynamics at arrival is 
modelled taking into account third body effects. Final 
conditions at Mars are taken perturbing the state vector 
at L1 and propagating backward for a time ∆t.  
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11. Temporary capture  
 

Table 8. Low-thrust transfers with ballistic capture 
DEPARTURE AMAX.(M/S2) TOF(DAY) MF/

M0 V∞(KM/S) 
15/08/2030 2.3e-4 721 0.165 0.2 
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Figure 12. Permanent capture with low-thrust 
manoeuvre at periares 

 
The solution vector has been extended as follows: 

TpppppvvvtTtn ],,,,,,,,,,,[ 5432132110 δδδ∆=y     (38) 
Where now δv1,δv2 and δv3 are the three 

components of the velocity vector at the lagrangian 
point L1 defined in the local radial, transversal, normal 
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martian reference frame. The value of first component 
belongs to the interval [-0.12,0.0] km/s while the values 
of the others belong to the interval [-0.12,0.12] km/s. 

The resulting point in deep space represents the 
target of the electric propulsion arc. An example of 
low-thrust transfer of this kind is reported in  reported 
in Tab. 9. The arrival at Mars has been plotted in Fig. 
11 and 12 for an unpowered and for a powered capture. 
In the first case no manoeuvres are performed at 
periapsis and the resulting capture by Mars is only 
temporary and lasts less than 500 days. In the second 
case a low-thrust manoeuvre is inserted when the 
distance from Mars falls down below 1e5 km, the 
resulting capture is now permanent. 
 

CONCLUSIONS 
In this paper a combined systematic-heuristic 

approach is proposed to solve trajectory design 
problems in which more than one solution is expected 
and where not just the global optimum should be 
obtained. The proposed combination of evolution 
programming and branching is suitable for problems 
characterised by differentiable and non-differentiable 
functions combining integer and real variables and have 
demonstrated to be an interesting tool for preliminary 
mission analysis especially when the objective function 
is a black-box. In fact in this respect an ad hoc 
systematic approach specifically dedicated to solve a 
certain problem is expected to be more efficient.  

Even though the obtained results must be 
considered preliminary, the proposed algorithm appears 
to be promising even for more complex space trajectory 
design problems. In particular the proposed use of 
interval analysis represents a promising way of 
guaranteeing and controlling convergence. 

The capabilities of this approach have been 
demonstrated solving the complex problem of 
identifying all optimal solutions for a Mars roundtrip in 
a given time frame. This first analysis has revealed that 
free return trajectories are always available for each 
launch window and can bee classified in three major 
groups depending on the length of each transfer leg. 
Although all of them present the significant drawback 
of having high velocity either at Earth or at Mars they 
could represent an option for high specific impulse 
engines or as abort options. Among nominal transfers 
in the time frame 2028, 2037 the 2033 launch window 
seams to offer interesting features since the transfer 
time for both legs is relative low with an associated low 
total ∆v and a low cost return via Venus is possible for 
a short stay. For nominal transfers the analysis of 
optimal staging sequences has shown how the optimal 
orbit for departure from Earth is elliptical but with the 
apocentre almost at the altitude of a geostationary orbit 
while for Mars the apocentre is much closer to the 

sphere of influence. Finally the last analysis presented 
has opened the interesting possibility to use low-thrust 
transfers for low-energy planetary capture at Mars. 
However this problem and the inverse approach used to 
design low-thrust arcs, are the subjects of an ongoing 
more detailed analysis and therefore, the results 
presented in this paper must be considered preliminary .  
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